CF Disease due to Residual CFTR Activity Mutations

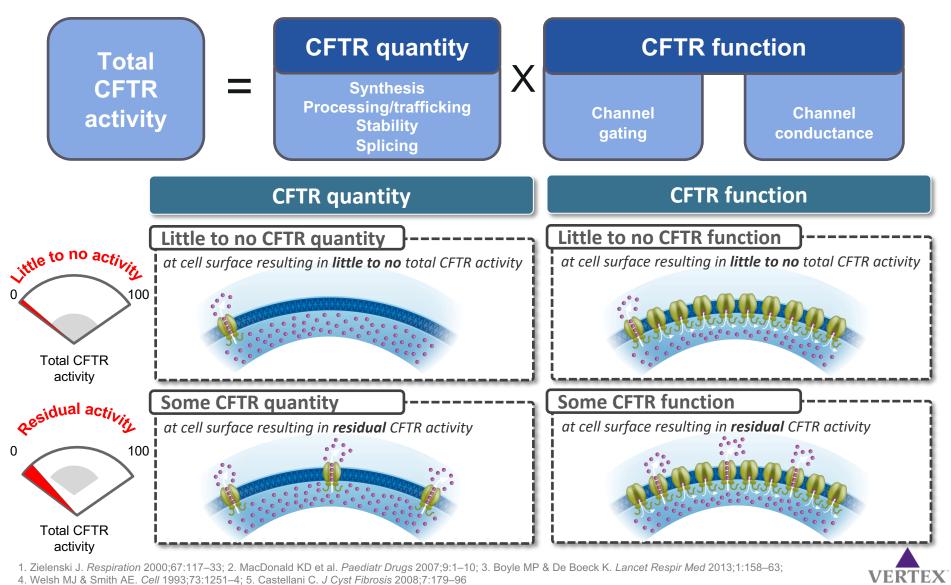
CFTR Mutations & Protein Defects: The Underlying Cause of CF

CFTR gene mutations can result in CFTR protein channel abnormalities – the underlying defect of CF disease¹

CFTR gene mutations can reduce chloride and other ion transport (total CFTR activity) through CFTR channels by affecting:^{1–3}

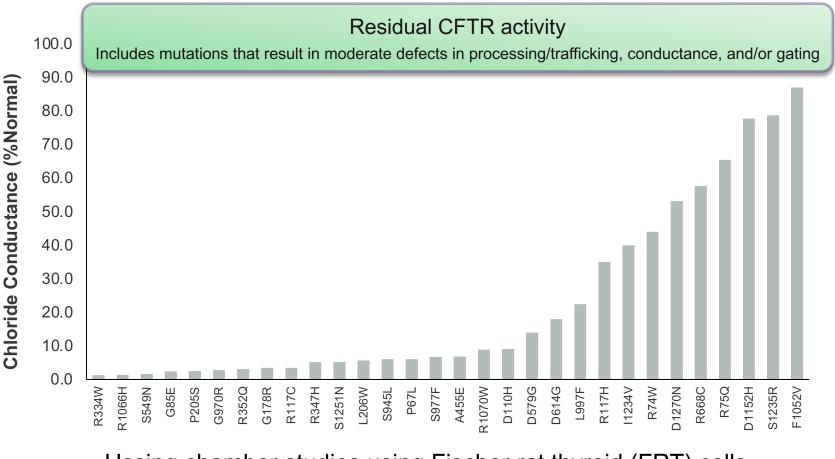
Quantity of CFTR channels at the cell surface,

and/or


Function of CFTR as an ion channel

Reduced quantity and/or function of CFTR channels leads to pathophysiologic changes in the epithelial cells of many organ systems^{1,2,4}

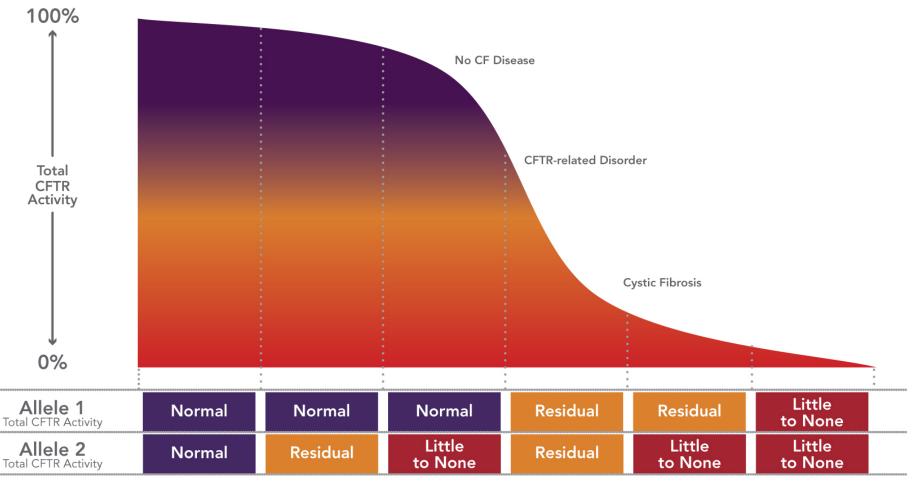
1. MacDonald KD et al. *Paediatr Drugs* 2007;9:1–10 2. Rowe SM et al. *N Engl J Med* 2005;352:1992–2001 3. Lommatzsch ST, Aris R. *Semin Respir Crit Care Med* 2009;30:531–8 4. Davis PB. *Am J Respir Crit Care Med* 2006;173:475–82


Effect of Mutations on Total CFTR Activity Depends on CFTR Quantity and Function¹⁻⁵

© 2020 Vertex Pharmaceuticals (Canada) Incorporated | VXMA-CA-20-2000067 | 04/2020

3

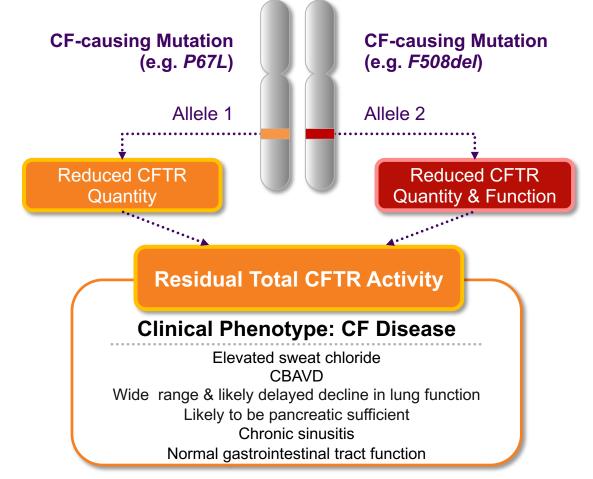
Different Mutant *CFTR* Genotypes Result in a Range of Total CFTR Protein Activity



Ussing chamber studies using Fischer rat thyroid (FRT) cells

Sosnay PR et al. Nat Genet. 2013;45(10):1160-1167

CFTR Genotype of Both Alleles is a Determinant of Total CFTR Activity and CF Phenotype



Adapted from Zielenski J. Respiration 2000;67:117-33

Genotype & Phenotype in Individuals with CF and Residual CFTR Activity

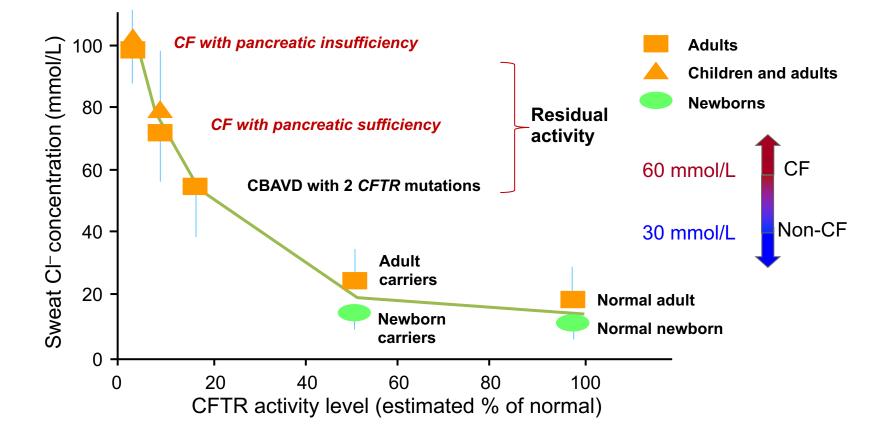
Example genotype: *P67L/F508del*

CF phenotype is also influenced by non-CFTR modifier genes and environmental factors

Boyle MP & De Boeck K. Lancet Respir Med 2013;1:158–63; Griesenbach U et al. Thorax 1999;54(Suppl 2):S19–23; Zielenski J. Respiration 2000;67:117–33; Davis PB. Am J Respir Crit Care Med 2006;173:475–82; Wilschanski M & Durie PR. Gut 2007;56:1153–63; Castellani C et al. J Cyst Fibrosis 2008;7:179–96; https://cftr2.org/mutations_history Accessed April 2020

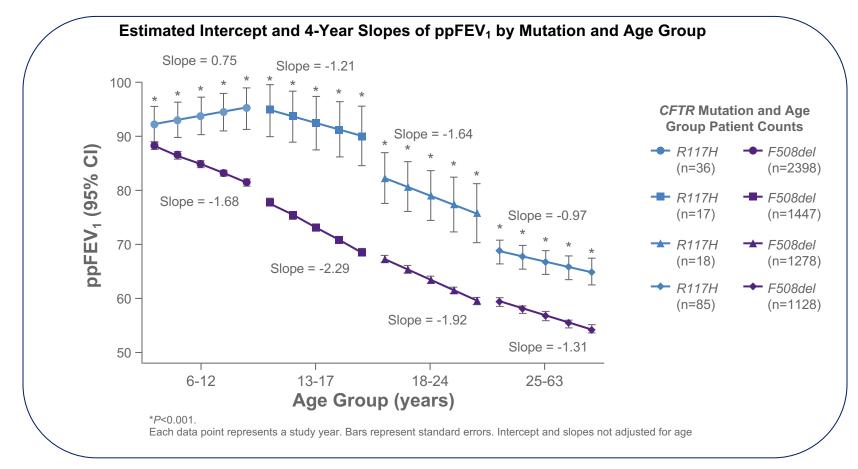
Clinical Phenotypes Are Heterogeneous in Patients with Residual CFTR Activity

	Masvidal	Genotype- Phenotype Consortium	Castaldo	Gilfillan	De Braekeleer	Antinolo
	2789+5G>A (n=11)	<i>R117H</i> (n=23)	<i>D614G</i> (n=3)	<i>P67L</i> (n=13)	<i>A455E</i> (n=14)	<i>R334W</i> (n=12)
Age at diagnosis, years (SD)	21 (8)	10 (11)	40, 40, 31	23 (11)	6 (5)	15 (15)
Sweat Chloride, mmol/L(SD)	103 (23)	82 (19)	79, 55, 97	57 (9)	79 (19)	96 (9)
ppFEV ₁ (SD)	82 (31)	73 (22)	51, 84, 88		85 (17)	59 (27)
PI, %	27	13	PS, PS, PI	23	50	33
<i>Pseudomonas</i> colonization, %	64	30	Y, N, N		50	33


ppFEV₁, percent predicted forced expiratory volume in 1 second; PS, pancreatic sufficient; PI, pancreatic insufficient; N, no; Y, yes.

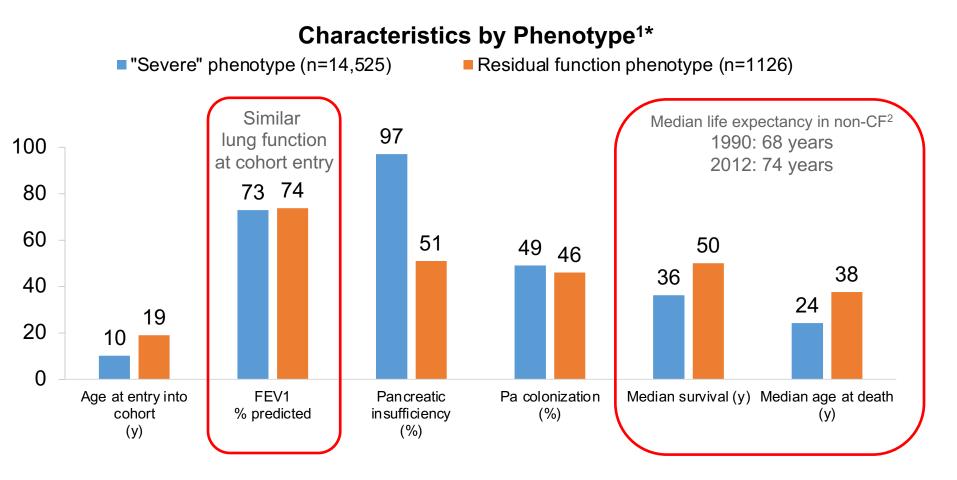
- Lower rates of pancreatic insufficiency
- Highly variable sweat chloride concentration
- Highly variable lung function

Masvidal L et al. *Eur J Hum Genet*. 2014;22(6):784-791. The Cystic Fibrosis Genotype–Phenotype Consortium. *N Engl J Med*. 1993;329(18):1308-1313. Castaldo G et al. *J Cystic Fibros*. 2006;5(3):193-195. Gilfillan A et al. *J Med Genet*. 1998;35(2):122-125. De Braekeleer M et al. *Hum Genet*. 1997;101(2):208-211. Antinolo G et al. *J Med Genet*. 1997;34(2):89-91.


Sweat Chloride and Pancreatic Status are Indicators of CFTR Activity

Note: Three important assumptions are made: (1) Sweat chloride levels are vs **predicted** CFTR activity; (2) normal individuals are assumed to have 100% CFTR activity; (3) carriers are assumed to have 50% CFTR activity.

Adapted from Rowe et al. *Proc Am Thorac Soc.* 2007;4(4):387-398. Farrell PM et al. *J Pediatr.* 2008;153(2):S4-S14.


Lung Disease in Patients With CF and Residual CFTR Activity May Be Delayed, But Not Lessened, Compared With Patients Homozygous for the F508del *CFTR* Mutation

- Patients with CF 6 to 12 years of age with the residual function genotype *R117H* did not experience a decline in lung function over 4 years compared with age-matched *F508del* homozygous patients
- However, patients with residual function genotypes in older age groups experienced similar lung function decline compared with age-matched *F508del* homozygous patients

Wagener JS et al. NACFC. 2015. Poster 415.

Once Symptoms Appear, Life Expectancy and Lung Function in Patients With CF With Residual Activity Phenotypes Are Similar to Those With Minimal Activity

*Clinical characteristics assessed during the year of cohort entry, and followed between 1993 and 2002.¹ Severe mutations: Both alleles: *G542X, R553X, W1282X, R1162X, 621–1G>T, 1717–1G>A, 1078T, 3659delC, F508del, I507del, N1303K, S549N, G85E, G551D,* and *R560T.* Residual function mutations: At least 1 allele: *R117H, R334W, R347P, 3849+10KbC>T, 2789+5G>A,* and *A455E. Pa, pseudomonas aeruginosa*

1. McKone EF et al. Chest. 2006;130(5):1441-1447. 2. World Health Organization. World Health Statistics, 2014.

Summary

- As of 10 January 2020, a total of 432 variants are annotated on the CFTR website, which 352 are CF-causing¹
- Some *CFTR* mutations are associated with almost complete loss of CFTR activity while others are associated with residual activity
- A patient's phenotype is primarily related to the effect of mutations on CFTR activity
- Phenotypes are variable in patients with mutations associated with residual CFTR activity
- Patients with residual CFTR activity phenotypes may be diagnosed later in life than *F508del* homozygotes, but median survival is still below the median survival in the overall non CF population worldwide

1. https://cftr2.org/mutations_history Accessed April 2020