Lung Disease in Cystic Fibrosis

Objectives

- Examine the role of CFTR channels in development of CF lung disease
- Explore the natural history and progression of CF lung disease including the relationship with nutritional status
- Investigate the impact of pulmonary exacerbations and microbial ecology in CF lung disease

Respiratory Anatomy

The respiratory system is comprised of airways that become progressively smaller and end in tiny sacs called alveoli

The Human Respiratory System. In: Tu J, et al. Computational Fluid and Particle Dynamics in the Human Respiratory System. Springer, 2013; Ch. 2.

The Role of CFTR Channels in Development of CF Lung Disease

Pathophysiologic Cascade of CF Lung Disease Can Lead to End Stage Lung Disease

Adapted from Ratjen FA. Respir Care 2009;54:595-605

CFTR Channels Regulate Fluid and Electrolyte Balance in Epithelial Tissues

CFTR channels act in tandem with ENaC to regulate fluid and electrolyte balance^{1,2}

CFTR gene mutations can result in CFTR protein channel abnormalities – the underlying defect of CF disease³

CFTR, Cystic Fibrosis Transmembrane conductance Regulator; ENaC, epithelial sodium channels. 1. MacDonald KD et al. *Paediatr Drugs* 2007;9:1–10; 2. Goralsk JL et al. *Curr Opin Pharmacol* 2010;10:294–9; 3. Rowe SM et al. *N Engl J Med* 2005;352:1992–2001

CFTR Gene Mutations Give Rise to CFTR Protein Channel Defects That Reduce Cl⁻ and Other Ion Transport

MacDonald KD et al. Paediatr Drugs 2007;9:1-10

Lung Clearance in the Healthy Airway Is an Active Process

Lung clearance mechanisms include a combination of airway surface liquid, mucus secretion and transport, and antimicrobial action, which together prevent infection and contamination

Stoltz DA, et al. N Engl J Med 2015; 372:351-362

Defective CFTR Reduces Chloride Transport in the CF Airway

Restricted CI" secretion into airway lumen

VER

ASL: Airway surface liquid

CF

1. Rowe SM et al. N Engl J Med 2005;352:1992–2001; 2. Proesmans M et al. Eur J Pediatr 2008;167:839–49; 3. Boucher RC. Eur Respir J 2004;23:146–58

Normal Mucus Transport Is Essential for Lung Clearance

Mucus clearance is the primary defense against inhaled infectious agents and toxic particles.¹

Mucus layer traps inhaled Mucus layer particles^{1,2} ASL =Mucus layer Beating action by cilia facilitates + PCL transport of mucus-trapped PCI particles out of lung^{1,2} PCL supports cilia and lubricates apical surface of the epithelium^{1,2} Goblet cells in epithelium secrete Epithelium mucins that form mucus layer² Action of CFTR and ENaC channels in epithelial cells maintains PCL²

ASL = airway surface liquid; PCL = periciliary liquid.

1. Button B, et al. Science. 2012;337(6097):937-941. 2. Stoltz DA, et al. N Engl J Med. 2015;372(4):351-362.

Normal CI- Transport Leads to Normal ASL and Effective Mucus Clearance

ASL = airway surface liquid; PCL = periciliary liquid. Button B, et al. *Cold Spring Harb Perspect Med.* 2013;3(8). pii: a009720. doi: 10.1101/cshperspect.a009720.

Impaired CI⁻ Transport Leads to Depleted ASL and Failure of Mucus Clearance

ASL = airway surface liquid; PCL = periciliary liquid. Button B, et al. *Cold Spring Harb Perspect Med.* 2013;3(8). pii: a009720. doi: 10.1101/cshperspect.a009720.

Defective CFTR Contributes to Mucus Stasis and Plaque Formation, Mucus Tethering, and Bacterial Aggregation

- 2. Stoltz DA, et al. N Engl J Med. 2015;372(4):351-362.
- 3. Hoegger MJ, et al. Science. 2014;345(6198):818-822.
- 4. Staudinger BJ, et al. Am J Respir Crit Care Med. 2014;189(7):812-824.

Bottom figure: From The New England Journal of Medicine, Stoltz DA, Meyerholz DK, Welsh MJ, Origins of cystic fibrosis lung disease, 372, 351-362. Copyright © 2015 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

Consequences²

Chronic

Tissue

Mucus

infection

Inflammation

remodeling

accumulation

Obstruction

The Natural History and Progression of CF Lung Disease

CF Pulmonary Symptoms Begin Early in Life

McColley SA et al. Pediatr Pulmonol. 2012;47:966-972

Lung Abnormalities Present in Infants Increase With Age in Patients With CF Diagnosed After NBS

Prevalence of Structural Lung Abnormalities on CT by Age

• The extent of lung abnormalities were associated with markers of airway inflammation

NBS = newborn screening; CT = computed tomography. Stick SM, et al. *J Pediatr*. 2009;155:623-628.

Lung Abnormalities May Be Detected in Infants Diagnosed During Newborn Screening for CF

Computed Tomography Scans of Infants (mean age 28 days, N=57)¹

Bronchial Wall Thickening Gas Trapping (arrows)

Based on CT scans (N=57)¹

- Bronchial dilatation in 18.6%
- Bronchial wall thickening in 45%
- Gas trapping in 66.7%

Study of infants with CF (n=71) and healthy controls $(n=54)^2$

- Significantly worse LCI, FRC, FEV, FVC, and FEF z-scores
- Abnormal gas mixing
- Hyperinflation

CT = computed tomography; FEV = forced expiratory volume; FVC = forced vital capacity; FEF = forced expiratory flow; FRC = functional residual capacity; LCI = lung clearance index. Reprinted with permission of the American Thoracic Society. Copyright © 2016 American Thoracic Society. Sly PD et al. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. *Am J Respir Crit Care Med.* 2009;180(2):146-152. The *American Journal of Respiratory and Critical Care Medicine* is an official journal of the American Thoracic Society. 1. Sly PD, et al. *Am J Respir Crit Care Med.* 2009;180:146-152. 2. Hoo A-F, et al. *Thorax.* 2012;67:874-881.

Bronchiectasis Is the First Irreversible Change to Occur in CF Lungs

Bronchiectasis Severity¹

PA culture-negative RUL bronchiectasis: 0.67 Total lung bronchiectasis: 0.44 RUL overall: 1.67 Total lung overall: 1.28

Nonmucoid PA culture-positive RUL bronchiectasis: 1.67 Total lung bronchiectasis: 0.51 RUL overall: 4.5 Total lung overall: 1.69

RUL Dilated bronchus

Mucoid PA culture-positive RUL bronchiectasis: 2.25

Total lung bronchiectasis: 1.63 RUL overall: 11.25 Total lung overall: 5.67

- Develops first in right upper lobes; associated with mucoid Pseudomonas aeruginosa¹
- In AREST CF, 29.3% had bronchiectasis at age 3 months and 83.7% at age 3 years²

Total scores based on extent and severity of bronchiectasis, mucous plugging, peribronchial thickening, parenchymal opacity, ground-glass opacity, cysts or bullae, and air trapping. Maximum score for each lobe = 12.

Bronchiectasis defined as airway lumen diameter greater than the diameter of the accompanying artery or an artery equidistant from the hilum, nontapering bronchi, or a bronchus extending to the pleural surface.

LUL= left upper lobe; RUL = right upper lobe.

- Reprinted, with permission, from Radiology 2009;252:534-543. © Radiological Society of North America.
- 1. Farrell PM, et al. *Radiology*. 2009(2):534-543.
- 2. Sly PD, et al. *N Engl J Med*. 2013;368(21):1963-1970

Lung Function Declines With Patient Age in CF

Median FEV1 percent predicted of individuals with CF, by birth cohort (Canada)¹

1. Cystic Fibrosis Canada. (2018). The Canadian Cystic Fibrosis Registry 2018 Annual Data Report. 2. Zolin A, et al. ECFSPR Annual Report 2013

Lung Disease Is the Strongest Predictor of Mortality in CF

Left figure: From *The New England Journal of Medicine*, Kerem E et al, Prediction of mortality in patients with cystic fibrosis, 326, 1187-1191. Copyright © 1992 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

1. Kerem E et al. *N Engl J Med.* 1992;324(18):1187-1191. 2. Cystic Fibrosis Foundation (CFF) Patient Registry. 2018 Annual Data Report. Bethesda, MD: CFF; 2019. 3. Zolin A, et al. ECFSPR Annual Report 2017

LCI Detects Early Airway Disease in Children Before Noticeable FEV₁ Decline

 11/22 (50%) children (aged 6 to 16 years) with CF had a FEV₁ z-score within the normal range, but only 1/22 (5%) had a normal LCI

*FEV₁ results were converted into standard deviation scores (z-scores) using published reference data, with a z-score of less than -1.96 being categorized as abnormal. Aurora P et al. *Thorax.* 2004;59(12):1068-1073. Reproduced from *Thorax*, Aurora P et al, 59, 1068-1073, copyright 2004, with permission from BMJ Publishing Group Ltd.

CF Pulmonary and Pancreatic Disease are Intimately Linked

Caloric Supply

- Decreased caloric intake
 - Anorexia
 - Repeated pulmonary exacerbations
- Enteral loss due to pancreatic insufficiency
- CFRD

Caloric Expenditure

- Increased caloric needs
 - CFTR defect
 - Persistent infection and inflammation

Malnutrition in Cystic Fibrosis

Reprinted from Advances in Pediatrics, 55, Amin R, Ratjen F, Cystic fibrosis: a review of pulmonary and nutritional therapies, 99-121, Copyright 2008, with permission from Elsevier.

Growth and Nutritional Status Associated With Pulmonary Function in Patients With CF

Higher BMI is associated with better FEV₁ in children with CF aged 6 to 19 years (US Data)¹ WFA >10th percentile at age 3 years and 6 years associated with better FEV₁ at age 6 years in CF²

BMI, body mass index; ppFEV₁, percent predicted forced expiratory volume in 1 second; WFA, weight for age. 1. Cystic Fibrosis Foundation (CFF) Patient Registry. 2018 Annual Data Report. Bethesda, MD: CFF; 2019. 2. Konstan M et al. *J Pediatr.* 2003;142(6):624-630.

The Impact of Pulmonary Exacerbations in CF Lung Disease

Pulmonary Exacerbations Affect Lung Function and Survival

While there is no consensus definition on what constitutes a pulmonary exacerbation, the criteria of Fuchs et al.1 have been widely used and adapted:

IV antibiotics for any 4

- Change in sputum
- New or Increased hemoptysis
- Increased cough
- Increased dyspnea
- Increased malaise, fatigue or lethargy
- Temperature over 38°C
- Anorexia or weight loss

- Sinus pain or tenderness
- Change in sinus discharge
- Change in chest physical examination
- Pulmonary function decreased by 10%
- Radiographic changes indicative of lung infection

Each acute pulmonary exacerbation has an effect on 5-year survival equivalent to a 12% reduction in % predicted FEV_{1}^{2}

1. Fuchs HJ, et al. *N Engl J Med*. 1994;331:637-642. 2. Liou TG, et al. *Am J Epidemiol*. 2001;153(4):345-352.

Pulmonary Exacerbations Are More Likely With Lower FEV₁

Adapted by permission from BMJ Publishing Group Limited. Thorax, Goss CH, Burns JL, 62, 360-367, copyright 2007.

Lung Function Worsens With Each Pulmonary Exacerbation

Failure to Recover Baseline Lung Function After Pulmonary Exacerbation (CFF Patient Registry, N=8,479)²

1. Adapted from Goss CH, Burns JL. Thorax. 2007;62(4):360-367. 2. Sanders DB, et al. Am J Resp Crit Care Med. 2010;182:627–632.

Treatment May Involve Hospitalization and/or IV Antibiotics for >1 to 2 Weeks

- In the US in 2013, 26.8% of children and 44.0% of adults with CF (35.3% of all patients) had a pulmonary exacerbation¹
 - >10% of adults ages 18 to 30 years experienced ≥3 exacerbations

Median Exacerbation Treatment Duration in Days, by Center (US 2018 data)²

1. CFF 2013 Annual Data Report to the Center Directors, 2014. 2. Cystic Fibrosis Foundation (CFF) Patient Registry. 2018 Annual Data Report. Bethesda, MD: CFF; 2019.

The Strongest Predictor of Pulmonary Exacerbation Is Prior Pulmonary Exacerbation

VanDevanter DR et al. J Cyst Fibros. 2015;14(6):763-769

Frequency of Pulmonary Exacerbations Is Associated With Risk of Death or Transplant

 Having more than 2 exacerbations per year leads to a greater than 4-fold increased risk of death or transplant compared with having no exacerbations

Reproduced from Thorax, de Boer K et al, 66, 680-685, copyright 2011, with permission from BMJ Publishing Group Ltd.

The Impact of Microbial Ecology in CF Lung Disease

Opportunistic Pathogens Impact CF Lung Disease

Prevalence of Respiratory Microorganisms by Age Group in 2018 (US Data)¹

- Mucoid *P aruginosa* associated with more severe lung disease²
- MRSA increasingly common, in parallel with community-acquired MRSA^{1,2}
- Greater morbidity and mortality associated with *Burkholderia* than with *P. aeruginosa*.³

MRSA = methicillin-resistant Staphylococcus aureas.

1. Cystic Fibrosis Foundation (CFF) Patient Registry. 2018 Annual Data Report. Bethesda, MD: CFF; 2019 2. LiPuma JJ. *Clin Microbiol Rev.* 2010;23(2):299-323. 3. Folescu TW, et al. *BMC Pulm Med.* 2015;15:158. doi: 10.1186/s12890-015-0148-2.

Immune Response and Lung Microbiome Interactions

- In CF, a reduction in bacterial diversity is associated with disease progression and pathogen colonisation
- The low bacterial diversity observed in CF has been associated with increased inflammation, a more advanced disease stage and a worse prognosis
- Low microbiota diversity also precedes the development of an exacerbation

Segal LN et al. Ann Am Thorac Soc. 2014;11(1):108-116

Cystic Fibrosis Lung Disease Summary

- Mutations in CFTR impair lung function, inducing changes that increase mucosal viscosity, impair mucociliary transport, and promote growth of antibiotic-resistant bacterial species
- CF lung disease begins within the first 1-2 years of life and leads to irreversible structural damage with declining lung function over time, and increased mortality
- Poorer lung function is associated with worse nutritional status
- Pulmonary exacerbation rates increase with decreasing lung function and lead to increased risk of mortality and lung transplant
- Changes in lung microbiome contribute to lung disease and inflammation in patients with CF

What is the earliest age CT scans can detect CF-related lung damage such as bronchial dilation, bronchial wall thickening, and gas trapping?

- A. Infants
- B. 1 year old
- C. 2 years old
- D. 6 years old

What is the earliest age CT scans can detect CF-related lung damage such as bronchial dilation, bronchial wall thickening, and gas trapping?

- A. Infants
- B. 1 year old
- C. 2 years old
- D. 6 years old

What is the strongest predictor of future pulmonary exacerbations?

- A. CFTR genotype
- B. Previous pulmonary exacerbations
- C. Number of days receiving IV antibiotics
- D. Age

What is the strongest predictor of future pulmonary exacerbations?

- A. CFTR genotype
- B. Previous pulmonary exacerbations
- C. Number of days receiving IV antibiotics
- D. Age

The lung microbiome of patients with CF is characterized by which of the following?

- A. Decreased microbial diversity
- B. Increased microbial load
- C. Increased levels of microbial pathogens
- D. All of the above

The lung microbiome of patients with CF is characterized by which of the following?

- A. Decreased microbial diversity
- B. Increased microbial load
- C. Increased levels of microbial pathogens
- D. All of the above

More Information

Lung Disease in Cystic Fibrosis

41 © 2020 Vertex Pharmaceuticals (Canada) Incorporated | VXMA-CA-20-2000060 | 04/2020

Mucociliary Clearance (MCC) is Assessed Using a Non-absorbable Tracer

- Subject inhales radiolabeled, non-absorbable marker
 - Nebulized technetium sulfur colloid (Tc-SC) aerosols containing submicronic particles 0.3 μ m in size
 - Minimal tracer penetration into bloodstream
 - Bulk of Tc-SC mass remains suspended in mucus layer
- Subject sits or lies recumbent in front of γ -radiation camera
 - Thin plates known as collimators positioned between subject and camera to filter out scatter and ensure a focused image
 - Sensitivity and spatial resolution dependent on inhaled Tc-SC dose, camera resolution, and thickness of collimator
- Rates of MCC vary by lung region
 - Small airways: ~1 mm/min
 - Large airways: ~2 cm/min

Donaldson SH, et al. Proc Am Thorac Soc. 2007;4(4):399-405.

LCI Is a Numerical Value Derived From MBW Test Data

- LCI: number of breaths to reduce the tracer gas to 1/40th the starting concentration
- LCI values increase with lung disease severity²

• LCI = CEV ÷ FRC

43

- Cumulative expired volume (CEV): Volume of air required to wash out the tracer
- Functional residual capacity (FRC): Volume of air in the lungs at the end of expiration
- LCI value increases with lung disease severity²

VERTEX

Reproduced with permission of the European Respiratory Society ©. *European Respiratory Journal Aug 2013, 42 (2) 380-388; DOI: 10.1183/09031936.00125312.* 1. Verbank S et al. *Eur Respir J.* 2013;42(2):380-388. 2. Horsley A. *Respir Med.* 2009;103(6):793-799.

Hyperpolarized Gas Magnetic Resonance Imaging (HP-MRI) Detects Ventilation Defects

HP-MRI Images of Lungs of a Healthy Individual and 3 Patients with CF

- Inhaled hyperpolarized noble gases (³He or ¹²⁹Xe) serve as contrast medium
- After inhalation of the gas, ventilated regions of the lung appear bright while poorly ventilated regions appear dark
- Technique permits high temporal and spatial resolution that may reflect important functional changes in CF

VERTEX

Reprinted from Academic Radiology, 12(11), Mentore K et al, Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment, 1423-1429, Copyright 2005, with permission from Elsevier.

Chronic Rhinosinusitis Is Common in Cystic Fibrosis

CRS Diagnostic Criteria

- Inflammation of the nose and paranasal sinuses with ≥2 of following symptoms for >12 weeks
 - Nasal blockage
 - Obstruction
 - Congestion
 - Nasal discharge
 - Facial pain/pressure
 - Reduced olfaction
- Plus ≥1 of following
 - Nasal polyps
 - Mucopurulent discharge
 - Edema/mucosal obstruction
 - Mucosal changes

Clinical Considerations

- Nearly 100% of CF patients have chronic rhinosinusitis and 86% have nasal polyps
- Mucus transport mechanisms affect nasal passages as well as lung airways
- CF-associated inflammation and remodeling promote nasal polyp formation
- Sinuses serve as a bacterial reservoir that transmits disease to lower airways

Illing EA, Woodworth BA. Curr Opin Pulm Med. 2014;20:623-31